
Reconstructing Dalvik applications

Marc Schönefeld

University of Bamberg

Confidence 09, Krakow, PL

Marc Schönefeld (University of Bamberg) Reconstructing Dalvik applications Confidence 09, Krakow, PL 1 / 33

Pre-Talk Agenda

Agenda

1 Introduction

2 Dalvik development from a RE perspective

3 Parsing Strategy

4 Processing the results

5 Finalizing

Marc Schönefeld (University of Bamberg) Reconstructing Dalvik applications Confidence 09, Krakow, PL 2 / 33

Pre-Talk Introduction

The Speaker

Marc Schönefeld

since 2002 Talks on Java-Security on intl. conferences (Blackhat,

RSA, DIMVA,PacSec, CanSecWest, HackInTheBox)

day time busy for Red Hat (since 2007)

PhD Student at University of Bamberg (since 2005)

Marc Schönefeld (University of Bamberg) Reconstructing Dalvik applications Confidence 09, Krakow, PL 3 / 33

Introduction Intro

Motivation

As a reverse engineer I have the tendency to look in the code that is

running on my mobile device

Coming from a JVM background I wanted to know what Dalvik is really

about

Wanted to learn some yet another bytecode language

I prefer coding to doing boring stuff, like filling out tax forms

Marc Schönefeld (University of Bamberg) Reconstructing Dalvik applications Confidence 09, Krakow, PL 4 / 33

Introduction Intro

What is Dalvik

Dalvik is the runtime that runs userspace Android applications

invented by Dan Bornstein (Google)

named after a village in Iceland

register-based

runs own bytecode dialect (not java bytecode)

Marc Schönefeld (University of Bamberg) Reconstructing Dalvik applications Confidence 09, Krakow, PL 5 / 33

Introduction Intro

Dalvik vs. JVM

Dalvik JVM

Architecture Register Stack

OS-Support Android Multiple

RE-Tools few many

Executables APK JAR

Constant-Pool per Application per Class

Marc Schönefeld (University of Bamberg) Reconstructing Dalvik applications Confidence 09, Krakow, PL 6 / 33

Introduction Intro

Dalvik Development process

Dalvik apps are developed using java developer tools on a

standard desktop system (like eclipse),

compiled to java classes (javac)

transformed to DX with the dx tool (classes.dex)

classes.dex plus meta data and resources go into a dalvik

application ’apk’ container

this is transferred to the device or an emulator (adb, or download

from android market)

Marc Schönefeld (University of Bamberg) Reconstructing Dalvik applications Confidence 09, Krakow, PL 7 / 33

Introduction Intro

Dalvik Development process

Marc Schönefeld (University of Bamberg) Reconstructing Dalvik applications Confidence 09, Krakow, PL 8 / 33

Introduction Intro

Dalvik runtime libraries

Dalvik JVM

java.io Y Y

java.net Y Y

android.* Y N

com.google.* Y N

javax.swing.* N Y

.

Marc Schönefeld (University of Bamberg) Reconstructing Dalvik applications Confidence 09, Krakow, PL 9 / 33

Dalvik development from a RE perspective

Dalvik development from a RE perspective

Dalvik applications are available as apk files, no source included, so

you buy/download a cat in the bag. How can you find out, whether

the application contains malicious code, ad/spyware, or phones

home to the vendor ?

has unpatched security holes (dex generated from vulnerable java

code) ?

contains copied code, which may violate GPL or other license

agreements ?

Marc Schönefeld (University of Bamberg) Reconstructing Dalvik applications Confidence 09, Krakow, PL 10 / 33

Dalvik development from a RE perspective

Dalvik development from a RE perspective

*.java *.class/*.jar *.dex

javac dx

jad/dava ?

Marc Schönefeld (University of Bamberg) Reconstructing Dalvik applications Confidence 09, Krakow, PL 11 / 33

Dalvik development from a RE perspective

Filling the gap

*.java *.class/*.jar *.dex

javac dx

jad/dava undx

Marc Schönefeld (University of Bamberg) Reconstructing Dalvik applications Confidence 09, Krakow, PL 12 / 33

Dalvik development from a RE perspective

Tool design choices

How to parse dex files?

write a complicated DEX parser

or utilize something existing

How to translate to class files (bytecode library)?

ASM

BCEL

Marc Schönefeld (University of Bamberg) Reconstructing Dalvik applications Confidence 09, Krakow, PL 13 / 33

Dalvik development from a RE perspective

Parsing DEX files

The dexdump tool of the android sdk can perform a complete
dump of dex files, it is used by undx

dexdump parsing directly

Speed Time advantage, do not have to

write everything from

Direct access to binary struc-

tures (arrays, jump tables)

Control dexdump has a number of nasty

bugs

Immediate fix possible

Available info Filters a lot All you can parse

.

The decision was to use as much of useable information from dexdump, for the rest we

parse the dex file directly

Marc Schönefeld (University of Bamberg) Reconstructing Dalvik applications Confidence 09, Krakow, PL 14 / 33

Dalvik development from a RE perspective

Parsing DEX files

This is useful dexdump output, good to parse

Marc Schönefeld (University of Bamberg) Reconstructing Dalvik applications Confidence 09, Krakow, PL 15 / 33

Dalvik development from a RE perspective

Parsing DEX files

This is useful dexdump output, omitting important data

Marc Schönefeld (University of Bamberg) Reconstructing Dalvik applications Confidence 09, Krakow, PL 16 / 33

Parsing Strategy

Strategy

extract classes.dex from *.apk file

parse global structures (constants)

for each class in dex

parse class meta data

for each method in class

Parse method meta data

for each instructions in method

transform to java bytecode

generate java method (BCEL method)

generate java class (BCEL method)

store class in jar

Marc Schönefeld (University of Bamberg) Reconstructing Dalvik applications Confidence 09, Krakow, PL 17 / 33

Parsing Strategy

http://jakarta.apache.org/bcel/

We chose the BCEL library from Apache as it has a very broad

functionality (compared to alternatives like are ASM and javassist)

Marc Schönefeld (University of Bamberg) Reconstructing Dalvik applications Confidence 09, Krakow, PL 18 / 33

Parsing Strategy

Structure

extract classes.dex from

*.apk file

parse global structures

(constants)

for each class in dex

parse class meta data

for each method in class

Parse method meta data

for each instructions in method

transform to java bytecode

generate java method (BCEL

method)

generate java class (BCEL method)

store class in jar

Extract global meta

information

Transform into relevant

BCEL constant

structures

Retrieve the string table

to prepare the Java

constant pool

Marc Schönefeld (University of Bamberg) Reconstructing Dalvik applications Confidence 09, Krakow, PL 19 / 33

Parsing Strategy

Process classes

extract classes.dex from *.apk file

parse global structures (constants)

for each class in dex

parse class meta data

for each method in class

Parse method meta data

for each instructions in method

transform to java bytecode

generate java method (BCEL

method)

generate java class (BCEL method)

store class in jar

Transform each class

Parse Meta Data

Process methods

Generate BCEL class

Dump class file

Marc Schönefeld (University of Bamberg) Reconstructing Dalvik applications Confidence 09, Krakow, PL 20 / 33

Parsing Strategy

Process class Meta Data

extract classes.dex from *.apk file

parse global structures (constants)

for each class in dex

parse class meta data

for each method in class

Parse method meta data

for each instructions in method

transform to java bytecode

generate java method (BCEL

method)

generate java class (BCEL method)

store class in jar

Extract Class Meta Data

Visibility, class/interface,

classname, subclass

Transfer static and

instance fields

Marc Schönefeld (University of Bamberg) Reconstructing Dalvik applications Confidence 09, Krakow, PL 21 / 33

Parsing Strategy

Process the individual methods

extract classes.dex from *.apk file

parse global structures (constants)

for each class in dex

parse class meta data

for each method in class

Parse method meta data

for each instructions in method

transform to java bytecode

generate java method (BCEL

method)

generate java class (BCEL

method)

store class in jar

Extract Method Meta

Data

Parse Instructions

Generate JAVA method

Marc Schönefeld (University of Bamberg) Reconstructing Dalvik applications Confidence 09, Krakow, PL 22 / 33

Parsing Strategy

Parse Method Meta Data

extract classes.dex from *.apk file

parse global structures (constants)

for each class in dex

parse class meta data

for each method in class

Parse method meta

data

for each instructions in method

transform to java bytecode

generate java method (BCEL

method)

generate java class (BCEL method)

store class in jar

transform method meta

data to BCEL method

structures

extract method

signatures,

set up local variable

tables,

map Dalvik registers to

JVM registers

Marc Schönefeld (University of Bamberg) Reconstructing Dalvik applications Confidence 09, Krakow, PL 23 / 33

Parsing Strategy

Generate the instructions

extract classes.dex from *.apk file

parse global structures (constants)

for each class in dex

parse class meta data

for each method in class

Parse method meta data

for each instructions in

method

transform to java

bytecode

generate java method

(BCEL method)

generate java class (BCEL method)

store class in jar

first create BCEL

InstructionList

create NOP proxies for

every Dalvik instruction

to prepare jump targets

(satisfy forward jumps)

For every Dalvik

instruction add an

equivalent JVM

bytecode block to the

JVM InstructionList

Marc Schönefeld (University of Bamberg) Reconstructing Dalvik applications Confidence 09, Krakow, PL 24 / 33

Parsing Strategy

Store generated data in BCEL structures

extract classes.dex from *.apk file

parse global structures (constants)

for each class in dex

parse class meta data

for each method in class

Parse method meta data

for each instructions in method

transform to java bytecode

generate java method

(BCEL method)

generate java class

(BCEL method)

store class in jar

generate the BCEL

structures

store to current context

in the end we have a

class file for each

defined class in the dex

Marc Schönefeld (University of Bamberg) Reconstructing Dalvik applications Confidence 09, Krakow, PL 25 / 33

Parsing Strategy

Store generated data in BCEL structures

Dalvik JVM code

Challenges

Assign Dalvik regs to jvm regs

obey stack balance rule (when processing opcodes)

type inference (reconstruct flow of data assignment opcodes)

Marc Schönefeld (University of Bamberg) Reconstructing Dalvik applications Confidence 09, Krakow, PL 26 / 33

Parsing Strategy

Store generated data in BCEL structures

Dalvik JVM code

Marc Schönefeld (University of Bamberg) Reconstructing Dalvik applications Confidence 09, Krakow, PL 27 / 33

Parsing Strategy Static analysis of the code

Now we have bytecode, what to do with it?

Statically analyze it!

Analyze the code with static checking tools (findbugs)

Programming bugs, vulnerabilities, license violations

Marc Schönefeld (University of Bamberg) Reconstructing Dalvik applications Confidence 09, Krakow, PL 28 / 33

Processing the results Decompile the code

Now we have bytecode, what to do with it?

Decompile it!

Feed the generated jar into a decompiler

It will spit out JAVA-like code

Structural equal to the original source (but some differences due

to heavy reuse of stack variables)

Marc Schönefeld (University of Bamberg) Reconstructing Dalvik applications Confidence 09, Krakow, PL 29 / 33

Processing the results Decompile the code

Now we have bytecode, what to do with it?

Graph it!

Findbugs comes with a control-flow-graph analyzer

Generate nodes and arrays (50 locs)

Write DIA file

enjoy that you can reuse tools from the java world

Marc Schönefeld (University of Bamberg) Reconstructing Dalvik applications Confidence 09, Krakow, PL 30 / 33

Processing the results Decompile the code

Some smaller facts

Hard Facts and Trivia

4000 lines of code

written in JAVA, only external dependency is BCEL

command line only

licensing is GPL (look out for undx on fedorahosted soon)

will be published after having tested successfully with recent

cupcake binaries and optimized dex files

undx name suggested by Dan Brownstein

Marc Schönefeld (University of Bamberg) Reconstructing Dalvik applications Confidence 09, Krakow, PL 31 / 33

Finalizing

finallyfg

Thank you for your attention

Time for Q & A

or send me a mail

marc.schoenefeld -at- gmx DOT org

Marc Schönefeld (University of Bamberg) Reconstructing Dalvik applications Confidence 09, Krakow, PL 32 / 33

Finalizing Build with open source tools

This presentation was build with open source

tools:

Fedora 10

Latex

Beamer

OpenJDK

Marc Schönefeld (University of Bamberg) Reconstructing Dalvik applications Confidence 09, Krakow, PL 33 / 33

	Pre-Talk
	
	

	Introduction
	Intro

	Dalvik development from a RE perspective
	Parsing Strategy
	Static analysis of the code

	Processing the results
	Decompile the code

	Finalizing
	Build with open source tools

